
UCD: A High-performance Datatype

Engine for Noncontiguous Data

Pavan Balaji, Argonne National Laboratory

AkshayVenkatesh, NVIDIA

Artem Polyakov, NVIDIA

Jim Dinan, NVIDIA

Manjunath GorentlaVenkata, NVIDIA

Pavan Balaji, Argonne National Laboratory

Noncontiguous Data Movement

Á Important form of communication for scientific

computing (MPI) and modern DL systems

ς Users can create static, but not contiguous,

data layouts

ς Vector-of-struct-of-indexed-of-hvector-of-

contig-of-doubles

Á UCX provides three (or four) modes of

communication today

ς Contig: for contiguous data

ς IOV: allows users to describe data as a series of

contiguous chunks

ς Generic: no information passed to UCX about

the data layout (user has to provide

pack/unpack functionality)

ς Strided: not implemented
X

Y Z

Pavan Balaji, Argonne National Laboratory

What are we missing?

Á Impossible to provide some functionality

such as reduction (need to know

integers/floats, and not just bytes)

ς Important for collectives as well as for RMA

accumulates

Á Inefficient to utilize hardware features

such as InfiniBand UMR or to decide

ōŜǘǿŜŜƴ έƎŜƴŜǊƛŎέ όǇŀŎƪκǳƴǇŀŎƪύ ǾǎΦ Lh±

Á Inconvenient to move noncontiguous data

from non-CPU memory

X

Y Z

IOV is better?

Generic is
better?

Pavan Balaji, Argonne National Laboratory

Shortcomings of IOV -based datatype processing

ÁEach IOV element contains:

ςa pointer to the start of a contiguous

segment

ς the length of the contiguous segment

Á In common patterns, each

contiguous segment is small (e.g.,

one double)

Á IOV creation is typically more

expensive than packing the data

ςPlus, the overhead of multiple small

communication operations

Pavan Balaji, Argonne National Laboratory

UCD: Noncontiguous Datatype Engine

Á UCD provides almost all of the MPI datatype functionality + additions

needed for practical usage within other libraries

Á Four sets of APIs

ς Predefined datatypes and datatype creation

ωAll MPI basic datatypes (including pair types) are supported

ωAll derived datatype creations (except darray) are supported

ς Pack/unpack/accumulate routines

ωWith extensions, so one can perform partial packing (for pipelining)

ς IOV routines: convert derived datatypes to an IOV

ς Flatten/unflatten routines

ωConvert the derived datatype into a portable format

ωCan be portably sent to other processes (e.g., when RMA is implemented

with active messages, or for shared memory)

Á LƴǘŜǊƴŀƭƭȅ ǳǘƛƭƛȊŜǎ άyaksaέ ǘƻ ǎǳǇǇƻǊǘ ōƻǘƘ /t¦ ŀƴŘ Dt¦ ƳŜƳƻǊȅ

ςWorking with NVIDIA (integrated), Intel (integrated) and AMD (in progress)

Pavan Balaji, Argonne National Laboratory

Datatype creation routines

ÁVery similar to MPI datatype creation routines

ÁHierarchical construction, so data layouts can be arbitrarily

complex

ÁBasically equivalent to pulling out the datatypes part of MPI

ƻǳǘǎƛŘŜ ǘƘŜ atL ǎǘŀƴŘŀǊŘΣ ǎƻ ƛǘΩǎ ǳǎŀōƭŜ ǿƛǘƘƛƴ ƻǘƘŜǊ

environments too

int ucd _create_vector (int count, int blocklength , int stride,

ucd_type_t oldtype , ucd_info_t info, ucd_type_t * newtype);

UCD_TYPE__INT, UCD_TYPE__FLOAT, UCD_TYPE__DOUBLE, ..

Pavan Balaji, Argonne National Laboratory

Pack/Unpack routines

ÁExtended versions of MPI_Pack/unpack routines

ςAllow for offsets and partial packing (allows one to pipeline packing

into temporary buffers)

ωE.g., pack the first 64KB into a temporary buffer, send it, pack the next

спY. ƛƴǘƻ ŀ ǘŜƳǇƻǊŀǊȅ ōǳŦŦŜǊΣ Χ

ςAllow for nonblocking packing

ωUseful for GPU resident buffers, where a DMA request or a kernel launch

might need to complete for the pack

ς!ƭƭƻǿ ŦƻǊ ǇǊŜŘŜŦƛƴŜŘ ƻǇǎ ƻƴ ǘƘŜ ǇŀŎƪŜŘ Řŀǘŀ ό{¦aΣ .hwΣ [hwΣ Χύ

int ucd _ipack (const void * inbuf ,

uintptr_t incount , ucd _type_t type, uintptr_t inoffset ,

void * outbuf , uintptr_t max_pack_bytes , uintptr_t * actual_pack_bytes ,

ucd _info _t info, ucd_op_t op, ucd _request_t *request);

Pavan Balaji, Argonne National Laboratory

IOV routines

Á Similar to packing, allows for offsets and partial conversion to IOV

segments: useful for pipelining

int ucd _iov (const void * buf ,

uintptr_t count, ucd _type_t type, uintptr_t iov_offset ,

struct iovec * iov , size_t max_iov_len , uintptr_t * actual_iov_len);

ucd_iov_len (count, type, & iov_len);

ucd_get_size (type, &size);

i f (count * size / iov_len > THRESHOLD) {

ucd_iov (..., iov , ...);

for (int i = 0; i < iov_len ; i ++) internal_isend (...);

} else {

ucd_ipack (..., & outbuf , ...);

ucd_wait (request);

internal_isend (...);

}

Intended Usage

Pavan Balaji, Argonne National Laboratory

Flatten/unflatten routines

ÁDatatype flattening converts a UCD type into a portable

format that can be transferred across virtual address space

boundaries (e.g., between MPI processes)

ÁParticularly useful for one-sided communication

ςOrigin process provides both origin and target datatype

ς If the communication library decides to use active messages to

implement it, it would need to send the target datatype to the target

process

ÁCan also be useful for some persistent collective operations

int ucd _flatten (ucd _type_t type, void * flattened_type);

int ucd_unflatten (ucd_type_t type, const void * flattened_type);

Pavan Balaji, Argonne National Laboratory

General comments about the UCD API

Á!ƭƭ ǊƻǳǘƛƴŜǎ ŀǊŜ ƭƻŎŀƭΥ ŜǾŜǊȅǘƘƛƴƎ ǿƛƭƭ ŎƻƳǇƭŜǘŜ άƛƳƳŜŘƛŀǘŜƭȅέ

(i.e., in a finite amount of time)

ÁRoutines can be separated into two classes:

ςData touching: pack/unpack are the only two routines that touch the

data and have nonblocking variants to allow for pipelining

ωIt would be semantically correct if we waited for completion in the

ipack/ iunpackroutines, but would hurt performance

ςNon-data-touching: everything else

ωNo nonblocking variants for these routines

Yaksa:

UCDõs internal data management engine

Pavan Balaji, Argonne National Laboratory

Yaksa Software Architecture

yaksi_Frontend

yaksa_

yaksuri_
Backend

Glue

yaksur_

yaksuri_
seqi_

yaksuri_seq

yaksuri_
cudai_

yaksuri_cuda

yaksuri_
hipi_

yaksuri_hip

yaksuri_
zei_

yaksuri_ze

Backend
Drivers

Device Independent
Handles corner cases

Manages inter-driver
interactions

Driver-specific fast-
path code

No parallel backend for CPUs: easy to write a pthreadsor OpenMP
wrapper outside of Yaksafor parallel packing

Pavan Balaji, Argonne National Laboratory

Backend code generation (1/2)

Á The frontend manages quirky inputs such as nonzero offsets or partial

packing/unpacking

ςConverts into a series of smaller structured pack/unpack routines

ςEasier to generate code for structured pack/unpack blocks

Á CǳƴŎǘƛƻƴǎ ƎŜƴŜǊŀǘŜŘ ŦƻǊ ǳǇ ǘƻ ŦƻǳǊ ƭŜǾŜƭǎ ƴŜǎǘƛƴƎ όǘƘǊŜŜΣ ƛŦ ȅƻǳ ŘƻƴΩǘ

include the basic datatype)

ςAll derived datatype combinations, except struct

ςEach datatype has function pointers pointing to the specific

pack/unpack functions that would work for that type

Pavan Balaji, Argonne National Laboratory

Backend code generation (2/2)
Up to 3-level datatypes (suitable for up to 4D data structures)

Can use any attribute available at type creation time
(static block lengths, basic datatypes)

Structured access with restrict pointers makes it easier
for compilers to vectorize and prefetch

Pavan Balaji, Argonne National Laboratory

Yaksa Vectorization

ÁData copy in all the Yaksakernels can be done in parallel

ÁFocusing on innermost loops of _generic functions:

ς Clang 10.0.0, GCC 9.2.0, GCC8.2.0, and GCC5.5.0

yield the same results (60 - 80%)

ωWe believe all functions should be vectorized

ÁWe are exploring the reason of failures

and how to promote vectorization

ς Calculating induction variables outside the loop

seems effective, but it needs more investigation

Á Note:

ς Other innermost kernels (contig/hindexed/resized) are not vectorized.

ς Vectorization results of specialized innermost loops that have fixed

loop ranges vary (because of a cost model and efficiency of SLP-

vectorizer)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

blklen blkhindx hvector

Ratio of vectorized _generic
functions

Pavan Balaji, Argonne National Laboratory

GPU backends (CUDA and ZE)

Á Kernel-offload based packing

Á Two sets of temporary buffers maintained on each device

ςOne for staging data (in case the pack is between device <-> host)

ςOne for staging datatype metadata

Á Staging data: Simple pool of buffers for packing/unpacking

ς If the pool is empty, the operation is queued up in software (progress

poke needed)

Á Staging datatype metadata:

ςManaged memory, allowing for frequently used datatypes to be

cached on the GPU

ςAllows the runtime to evict these buffers if the application needs it

Pavan Balaji, Argonne National Laboratory

GPU backend code generation: CUDA example

Separate host-side and device-side code generation, and explicit
management of datatype metadata on the GPU is needed

