UCD: A High-performance Datatype
Engine for Noncontiguous Data

Pavan Balaji, Argonne National Laboratory
Akshaywenkatesh, NVIDIA
Artem Polyakov, NVIDIA

JimDinan NVIDIA
ManjunathGorentlaVenkata, NVIDIA

(@) ENERGY

Noncontiguous Data Movement

A Important form of communication for scientific
computing (MPI) and modern DL systems

¢ Users can create static, but not contiguous,
data layouts

¢ Vectorof-struct-of-indexedof-hvectorof-
contig-of-doubles
A UCX provides three (or four) modes of
communication today
¢ Contig: for contiguous data

¢ 10V: allows users to describe data as a seri
contiguous chunks

¢ Generic: no information passed to UCX about
the data layout (user has to provide Y

Z
pack/unpack functionality) ‘ é
X

G Strided not implemented

6\‘*/3 h Pavan Balaji, Argonne National Laboratory

What are we missing?

A Impossible to provide some functionality
such as reduction (need to know
Integers/floats, and not just bytes)

I IOV is better?

¢ Important for collectives as well as for RMA
accumulates
A Inefficient to utilize hardware features
such as InfiniBand UMR or to decide
0SU6SSY €3ISYSNMOE
A Inconvenient to move noncontiguous da
from nonCPU memory

Generic is
better?

..

S Pavan Balaji, Argonne National Laboratory

Shortcomings of IOV -based datatype processing

A Each IOV element contains:

¢ a pointer to the start of a contiguous
segment

¢ the length of the contiguous segment

A In common patterns, each
contiguous segment is small (e.qg.,
one double)

A IOV creation is typically more
expensive than packing the data

¢ Plus, the overhead of multiple small
communication operations

S Pavan Balaji, Argonne National Laboratory

UCD: Noncontiguous Datatype Engine

A UCD provides almost all of the MPI datatype functionality + additions
needed for practical usage within other libraries
A Four sets of APIs
¢ Predefined datatypes and datatype creation
w All MPI basic datatypes (including pair types) are supported
w All derived datatype creations (exceqrray) are supported
¢ Pack/unpack/accumulate routines
w With extensions, so one can perform partial packing (for pipelining)
¢ IOV routines: convert derived datatypes to an IOV
¢ Flatten/unflatten routines
w Convert the derived datatype into a portable format

w Can be portably sent to other processes (e.g., when RMA is implemented
with active messages, or for shared memory)

ALYGSNY! tyalkdad di2 f 4 dzS90812 NI 02 G K T |
¢ Working with NVIDIA (integrated), Intel (integrated) and AMD (in progress)

Pavan Balaji, Argonne National Laboratory

Datatype creation routines

UCD_TYPE__INT, UCD_TYPE__FLOAT, UCD_TYPE__DOUBLE, ..

int ucd_create vector (int count, int blocklength , int stride,

ucd type t oldtype , ucd_ info t info, ucd type t *newtype);

A Very similar to MPI datatype creation routines

A Hierarchical construction, so data layouts can be arbitrarily
complex

A Basically equivalent to pulling out the datatypes part of MPI
2dzi A RS GKS atlL adlyRFNREZ
environments too

Pavan Balaji, Argonne National Laboratory

hd

a

Pack/Unpack routines

int ucd ipack (constvoid * inbuf |
uintptr_t incount , ucd type t type, uintptr_t inoffset
void * outbuf , uintptr_t max_pack _bytes , uintptr_t * actual_pack_bytes

ucd info _t info, ucd op t op, ucd_request t *request);

A Extended versions dflPl_Packinpack routines

¢ Allow for offsets and partial packing (allows one to pipeline packing
Into temporary buffers)
w E.g., pack the first 64KB into a temporary buffer, send it, pack the next
cnY. AYy0d2 | 0SYLBRZNINEB 0dzFFSNE X
¢ Allow for nonblocking packing
w Useful for GPU resident buffers, where a DMA request or a kernel launch
might need to complete for the pack

cltt2g FT2N) LINBRSTAYSR 2LJa 2y 0KS

Pavan Balaji, Argonne National Laboratory

IOV routines

int ucd _iov (const void * buf ,
uintptr_t count, ucd type t type, uintptr_t
struct iovec *iov , size t max_ iov_len , uintptr_t

lov_offset

*actual_iov_len

);

A Similar to packing, allows for offsets and partial conversion to IOV

segments: useful for pipelining

Intended Usage

ucd_iov_len

ucd_get_size

(count, type, &
(type, &size);

I f (count * size /

ucd_iov (..., i

} else {
ucd_ipack (..., &

internal_isend

}

for (int i =0;

ucd_wait (request);

iov_len);
lov_len >THRESHOLD) {
ov , ...);
I < iov_len I ++)
outbuf , ...);
()5

internal_isend (...);

Pavan Balaji, Argonne National Laboratory

Flatten/unflatten routines

int ucd flatten (ucd type t type, void * flattened_type);
int ucd_unflatten (ucd_type t type, const void * flattened_type);

A Datatype flattening converts a UCD type into a portable
format that can be transferred across virtual address space
boundaries (e.g., between MPI processes)

A Particularly useful for onsided communication

¢ Origin process provides both origin and target datatype

¢ If the communication library decides to use active messages to
iImplement it, it would need to send the target datatype to the target
process

A Can also be useful for some persistent collective operations

Pavan Balaji, Argonne National Laboratory

General comments about the UCD API

Al ff NRdJziAySa NS 20ty S@S
(.e., in a finite amount of time)

A Routines can be separated into two classes:
¢ Data touching: pack/unpack are the only two routines that touch the
data and have nonblocking variants to allow for pipelining

w It would be semantically correct if we waited for completion in the
ipack iunpackroutines, but would hurt performance

¢ Nondatatouching: everything else

w No nonblocking variants for these routines

Pavan Balaji, Argonne National Laboratory

Yaksa:
UCDOs 1 nternal dat a m:

6 U.S. DEPARTMENT OF
.9/ ENERGY

Yaksa Software Architecture
yaksa

Device Independent

Frontend Handles corner case:
Tyaksur_
Backend _ Manages interdriver
Glue > QLLTIIT yaKSUri sesssuss > interactions
Tyaksuri_seq Tyaksuri_cuda Tyaksuri_hip 'Tyaksuri_ze
Backend | yaksuri yaksuri_ yaksuri_ yaksuri ~ Driverspecific fast
Drivers seqi_ cudai_ hipi_ zei path code

<

No parallel backend for CPUs: easy to wripgreeadsor OpenMP
wrapper outside olaksdor parallel packing

S Pavan Balaji, Argonne National Laboratory

Backend code generation (1/2)

IPISIIF IR IS I nnnnnnnnsn

A The frontend manages quirky inputs such as nonzero offsets or partial
packing/unpacking
¢ Converts into a series of smaller structured pack/unpack routines
¢ Easier to generate code for structured pack/unpack blocks
A CdzyOiAzya 3IASYSNIUOGSR F2NJ dzLJ G2 F2d
Include the basic datatype)
¢ All derived datatype combinations, except struct

¢ Each datatype has function pointers pointing to the specific
pack/unpack functions that would work for that type

Pavan Balaji, Argonne National Laboratory

Backend code generation (2/2)

Up to 3level datatypes (suitable for up to 4D data structures)

int yaksuri_seqi_pack_hvectorhvectér_blklen_1_double(const void *inbuf, wvoid *outbuf, uintptr_t count, yaksi_type_s * type)

{

int rc = YAKSA SUCCESS;

const”char *restriwt sbuf = (const char *) inbuf;
char “¥restrict dbuf = (char *) outbuf;

uintptr_t extent ATIRIBUTE(Cunused)) = type->extent;

int countl = type->u.hveetor. count;

int blocklengthl ATTRIBUTE(Cunused)) = type->u.hvector.blocklength;
intptr_t stridel = type->u.hvestor.stride;

uintptr_t extentl ATTRITUTCECC D) t

int countZ = type->u.hv

int blocklengthZ ATTRIB

intptr_t strideZ = type->u.hvector.child->u.hvector.shtiide;

uintptr_t extent2 ATTRIBUTE(CCunused)) = type->u.hveltor.child->extent;

uintptr_t idx = @;
for (int 1 = @; 1 < count; i++) {
for (int j1 = @; jl < countl; jl++).4
for (int k1l = @; k1l < blocklengthl; kl++) {
for (int j2 = @; j2 <<ount2; j2++) {
for (int kZ_=_R20-Z-<"1T] KZ++) {
*((double *) (void *) (dbuf + 1dx)) =
*((const double *) (const void *) (sbuf + 1 * extent + jl1 * stridel +
kl * extentZ + j2 * stride2 + kZ2 * sizeof(doublesT);
1dx += sizeof(double};

}

return rc;

S Pavan Balaji, Argonne National Laboratory

Yaksa Vectorization

A Data copy in all th&aks&kernels can be done in parallel

A Focusing on innermost loops of _generic functions:

¢ Clang 10.0.0, GCC 9.2.0, GCC8.2.0, and GCC5.5.0

yield the same results (6(B0%) Ratio of vectorized _generic
functions

w We believe all functions should be vectorized 90%
80%

A We are exploring the reason of failures 70%

60%

and how to promote vectorization 50%

40%

¢ Calculating induction variables outside the loop

20%

seems effective, but it needs more investigation 1%

i 0%
A Note:
¢ Other innermost kernels (contigindexedresized) are not vectorized.

blklen blkhindx hvector

¢ Vectorization results of specialized innermost loops that have fixed
loop ranges vary (because of a cost model and efficiency ef SLP
vectorizer)

0 Pavan Balaji, Argonne National Laboratory

GPU backends (CUDA and ZE)

A Kerneloffload based packing

A Two sets of temporary buffers maintained on each device
¢ One for staging data (in case the pack is between devicl@ast)
¢ One for staging datatype metadata

A Staging data: Simple pool of buffers for packing/unpacking

¢ If the pool is empty, the operation is queued up in software (progress
poke needed)

A Staging datatype metadata:

¢ Managed memory, allowing for frequently used datatypes to be
cached on the GPU

¢ Allows the runtime to evict these buffers if the application needs it

Pavan Balaji, Argonne National Laboratory

GPU backend code generation: CUDA example

int yaksuri_cudai_pack_hvector_hvetsor_hve: (const *inbuf, *outbuf,

¥ _tvpe, yaksi_request_s **request>

{

int rc = YAKSA_SUGCESS;
cudaError_t cerr;

rc = yaksuri_cudai_md_alloe(type);

yaksur
yaksur
yaksuri_cudai_md_s *md = cuda->md;

int n_threads = YAKSURI_CUDAI_THREAD_BLOCK_SIZE;

int n_blocks = count * cuda->num_elements / YAKSURI_CUDAI_THREAD_BLOCK_SIZE;

n_blocks += !!(count * cuda->num_elements % YAKSURI_CUDAI_THREAD_BLOCK_SIZE);

void *args[4] = { &inbuf, &outbuf, &count, &md };

cerr = cudalaunchKernel((const void *) yaksuri_cudai_kernel_pack_hvector_hvector_hvector_double, n_blocks, n_thre\
ads, args, @, yaksuri_cudai_global.stream);

YAKSURI_CUDAI_CUDA_ERR_CHECK(cerr);

cerr = cudaStreamSynchronize(yaksuri_cudai_global.stream);
YAKSURI_CUDAI_CUDA_ERR_CHECK(cerr);

return rc;

s Y Pavan Balaji, Argonne National Laboratory

