UCX-Py
Peter Entschev (NVIDIA)
Matt Baker (ORNL)
Benjamin Zaitlen (NVIDIA)
UCX-Py

What is it?

- "Pythonic" interface for UCX
- Easy to get started for Python developers
- Simple replacement for Python communications (e.g., sockets)
UCX-Py
Who is it for?

- Python developers
- No low-level communications, UCX or C knowledge required
- Data scientists benefit from it through applications such as Dask
UCX-Py Primary Use Today

PyData – Contemporary Analytics

- PyData
 - Arrays
 - DataFrames
 - Machine Learning
 - Distributed Computing
- RAPIDS
 - GPU accelerated PyData
PyData Buffers
Community Interoperability with CUDA Array Interface and DLPack
PyData Buffers
Community Interoperability

PYTORCH

mpi4py

mxnet

Numba

Chainer

CuPy
Using UCX-Py

Installation

- **Install from conda (with CUDA support)**

 `conda create -n ucx -c conda-forge -c rapidsai \
 cudatoolkit=<CUDA version> ucx-proc=*=gpu ucx ucx-py python=3.8`

- **Install from conda (without CUDA support)**

 `conda create -n ucx -c conda-forge -c rapidsai \
 cudatoolkit=<CUDA version> ucx-proc=*=cpu ucx ucx-py python=3.8`

- **Installing from source:**

Using UCX-Py

Supported Use Cases

- Officially supporting two use cases today:
 - Pure Python
 - RAPIDS / Dask-CUDA
Using UCX-Py

Python API

```python
ucp

ucp.create_listener(callback_func[, port, ...])

ucp.create_endpoint(ip_address, port[, ...])

ucp.get_address([ifname])

ucp.get_config()

ucp.get_ucp_worker()

ucp.get_ucx_version()

ucp.init([options, env_takes_precedence, ...])

ucp.progress()

ucp.reset()
```

```python
Endpoint(endpoint, ctx, msg_tag_send, ...)

Endpoint.abort()

Endpoint.close()

Endpoint.closed()

Endpoint.close_after_n_recv(n[, ...])

Endpoint.cuda_support()

Endpoint.get_ucp_endpoint()

Endpoint.get_ucp_worker()

Endpoint.recv(buffer[, tag])

Endpoint.send(buffer[, tag])

Endpoint.ucx_info()

Endpoint.uid
```

Listener(backend)

Listener.close()

Listener.closed()

Listener.port
Using UCX-Py
Expected Python Usage

Server

```python
async def server(ep):
    # buffer -> __array_interface__ / __cuda_array_interface__
    msg = # allocate buffer
    await ep.send(msg)
```

Client

```python
async def client(ep):
    # buffer -> __array_interface__ / __cuda_array_interface__
    msg = # allocate buffer
    await ep.recv(msg)
```
Using UCX-Py
Send/Recv with CuPy

Server

```python
async def send(ep):
    # recv buffer
    arr = cupy.empty(n_bytes, dtype='u1')
    await ep.recv(arr)
    assert (cupy.count_nonzero(arr) == np.array(0, dtype=np.int64))
    print("Received CuPy array")

    # increment array and send back
    arr += 1
    print("Sending incremented CuPy array")
    await ep.send(arr)
    await ep.close()

async def main():
    global lf
    lf = ucp.create_listener(send, port)
    while not lf.closed():
        await asyncio.sleep(0.1)
```

Client

```python
async def main():
    host = ucp.get_address(ifname='eth0')  # device
    ep = await ucp.create_endpoint(host, port)
    msg = cupy.zeros(n_bytes, dtype='u1')  # data to send

    # send message
    print("Send Original CuPy array")
    await ep.send(msg)  # send the real message

    # recv response
    print("Receive Incremented NumPy arrays")
    resp = cupy.empty_like(msg)
    await ep.recv(resp)  # receive the echo
    await ep.close()
    cupy.testing.assert_array_equal(msg + 1, resp)
```
Dask

- General purpose Python library for parallelism
- Scales existing libraries, like NumPy, Pandas, and Scikit-Learn
- Flexible enough to build complex and custom systems
- Accessible for beginners, secure and trusted for institutions
Dask
Accelerates Existing Python Ecosystem

NumPy

```python
import dask.array as da
x = da.ones((10000, 10000))
x + x.T - x.mean(axis=0)
```

Pandas

```python
import dask.dataframe as dd
df = dd.read_csv("s3://*.csv")
df.groupby("x").y.mean()
```

Scikit-Learn

```python
from dask_ml.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(data, labels)
```
Dask

Efficient Task Graph Execution on Parallel Hardware

Scikit-Learn cross-validated grid search over a pipeline
Using UCX-Py
RAPIDS / Dask-CUDA

Setup

```python
from dask.distributed import Client
from dask_cuda import LocalCUDACluster
from dask_cuda.initialize import initialize

# ON/OFF settings for various transports
enable_tcp_over_ucx = True
enable_infiniband = False
enable_nvlink = False

cluster = LocalCUDACluster(
    interface="enp1s0f0",  # Ethernet interface
    protocol="ucx",
    enable_tcp_over_ucx=enable_tcp_over_ucx,
    enable_infiniband=enable_infiniband,
    enable_nvlink=enable_nvlink,
)
client = Cluster(client)
```

Analysis

```python
d1 = dask_cudf.from_cudf(..., npartitions=10)
d2 = dask_cudf.from_cudf(..., npartitions=10)
res = d1.merge(d2, how='inner', on=['id'])
res_sorted = res.sort_values(by='id')
res_sorted = res_sorted.persist()
```
Changes since UCF 2019
Releases 0.11 through 0.17

- Substantial increase in documentation
- API improvements and extensions
- Support for user-specified tags
- EndpointReuse — May be deprecated after cudaIpcOpenMemHandle fix
- Separating Python API from Cython backend
- Many Cython improvements reducing Python overhead
- Reduced hardcoded UCX variables — rely more on UCX defaults
Changes since UCF 2019
Releases 0.11 through 0.17 (cont.)

• Many bug fixes, e.g., segfaults, deadlocks and cleanup issues
• Better error handling
• Support for endpoint error handler
• Logger formatting similar to UCX’s
• NVTX annotations
• More benchmarks
• Multi-GPU and multi-node tests
Changes since UCF 2019

NVTX Annotations
Changes since UCF 2019

Testing and Benchmarking

cudf Merge Throughput -- Average 19.36 GB/s

Historical Throughput
Benchmarks
GPU-GPU Communications with cuDF

TCP

$ python dask_cuda/benchmarks/local_cudf_merge.py -p tcp -d 1,2 -c 100_000_000
Merge benchmark
backend | dask
merge type | gpu
rows-per-chunk | 100000000
protocol | tcp
device(s) | 1,2
rmm-pool | True
frac-match | 0.3
data-processed | 6.40 GB

Wall-clock | Throughput

17.07 s | 374.98 MB/s
17.40 s | 367.81 MB/s
17.27 s | 370.62 MB/s

(w1,w2) | 25% 50% 75% (total nbytes)

(00,01) | 273.70 MB/s 311.72 MB/s 401.11 MB/s (18.60 GB)
(01,00) | 323.58 MB/s 355.55 MB/s 447.96 MB/s (18.60 GB)

CUDA IPC

$ python dask_cuda/benchmarks/local_cudf_merge.py -p ucx -d 1,2 -c 100_000_000
Merge benchmark
backend | dask
merge type | gpu
rows-per-chunk | 100000000
protocol | ucx
device(s) | 1,2
rmm-pool | True
frac-match | 0.3
tcp | True
ib | True
nvlink | True
data-processed | 6.40 GB

Wall-clock | Throughput

541.41 ms | 11.82 GB/s
523.50 ms | 12.23 GB/s
473.35 ms | 13.52 GB/s

(w1,w2) | 25% 50% 75% (total nbytes)

(00,01) | 32.17 GB/s 38.50 GB/s 40.26 GB/s (16.20 GB)
(02,01) | 35.17 GB/s 39.39 GB/s 39.88 GB/s (16.20 GB)

~40 GB/s
Benchmarks

GPU-GPU Communications with cuDF

TCP

```bash
$ python dask_cuda/benchmarks/local_cudf_merge.py -p tcp -d 1,2 -c 100_000_000
Merge benchmark
```

<table>
<thead>
<tr>
<th>backend</th>
<th>dask</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge type</td>
<td>gpu</td>
</tr>
<tr>
<td>rows-per-chunk</td>
<td>100000000</td>
</tr>
<tr>
<td>protocol</td>
<td>tcp</td>
</tr>
<tr>
<td>device(s)</td>
<td>1,2</td>
</tr>
<tr>
<td>rmm-pool</td>
<td>True</td>
</tr>
<tr>
<td>frac-match</td>
<td>0.3</td>
</tr>
<tr>
<td>data-processed</td>
<td>6.40 GB</td>
</tr>
</tbody>
</table>

Wall-clock	Throughput
17.07 s | 374.98 MB/s
17.40 s | 367.81 MB/s
17.27 s | 370.62 MB/s

(00,01) | 273.70 MB/s 311.72 MB/s 401.11 MB/s (18.60 GB)
(01,00) | 323.58 MB/s 355.55 MB/s 447.96 MB/s (18.60 GB)

~400 MB/s

InfiniBand

```bash
$ python dask_cuda/benchmarks/local_cudf_merge.py -p ucx -d 1,2 -c 100_000_000 --disable-nvlink --ucx-net-devices=auto
Merge benchmark
```

<table>
<thead>
<tr>
<th>backend</th>
<th>dask</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge type</td>
<td>gpu</td>
</tr>
<tr>
<td>rows-per-chunk</td>
<td>100000000</td>
</tr>
<tr>
<td>protocol</td>
<td>ucx</td>
</tr>
<tr>
<td>device(s)</td>
<td>1,2</td>
</tr>
<tr>
<td>rmm-pool</td>
<td>True</td>
</tr>
<tr>
<td>frac-match</td>
<td>0.3</td>
</tr>
<tr>
<td>tcp</td>
<td>True</td>
</tr>
<tr>
<td>ib</td>
<td>True</td>
</tr>
<tr>
<td>nvlink</td>
<td>False</td>
</tr>
<tr>
<td>data-processed</td>
<td>6.40 GB</td>
</tr>
</tbody>
</table>

Wall-clock	Throughput
680.44 ms | 9.41 GB/s
951.01 ms | 6.73 GB/s
678.32 ms | 9.44 GB/s

(w1,w2)	25% 50% 75% (total nbytes)
(00,01) | 273.70 MB/s 311.72 MB/s 401.11 MB/s (18.60 GB)
(01,00) | 323.58 MB/s 355.55 MB/s 447.96 MB/s (18.60 GB)

~9 GB/s
UCX-Py Layers

- Currently divided in 3 layers:
 - Python: what the user sees
 - Cython: where Python interacts with C
 - C:
 - Utils that are considerably cleaner to write than with Cython
 - Code that interacts with other libraries (e.g., hwloc)
UCX-Py Data Type
Array

- **Array class implemented in Cython**
- **Emulates NumPy's `ndarray` class**
- **Compliant with protocols**
 - `__array_interface__`
 - `__cuda_array_interface__`
- **Easy to interface with PyData libraries implementing protocols**
 - NumPy, CuPy, Numba, etc.
- **Efficient to interface with PyData and UCX**
UCX-Py Use Cases

RAPIDS TPCx-BB

- Public benchmark of 30 big data analytics queries
- Represents real-world ETL and ML workflows
- Benchmarked by RAPIDS team on 1TB and 10TB scales
UCX-Py Use Cases

RAPIDS TPCx-BB
UCX-Py Use Cases

RAPIDS TPCx-BB

As of June 2020
UCX-Py Use Cases

RAPIDS TPCx-BB

Dask task stream with Python sockets
(Red is communication)

Dask task stream with UCX
(Red is communication)
UCX-Py Use Cases
Summit

- Research for COVID-19
- Structure-based drug discovery
- Total 52x single-node speedup
 - 42 CPU cores per node
 - 6 GPUs per node
- UCX responsible for ~2x speedup vs Python sockets (pure TCP)

Source:
UCX-Py Use Cases

Summit

Source:
UCX-Py Challenges

UCX-Py:
- Support for UCX conda packages with IB
- Conda packages supporting every transport
- Multi-threading support
- Shared memory support (double check, probably fine in 1.9.0)
- Further latency reduction

UCX:
- CUDA UVM support
Upstreaming UCX-Py to OpenUCX

- In the process of completely separating API and Cython backend
- Our plan was to do it in 2020, but got delayed to early 2021
- Current plan is to upstream in 6 phases:
 - C backend
 - Backend (Cython) API
 - Backend (Cython) code
 - Frontend (Python) API
 - Frontend (Python) code
 - Python packaging
UCX-Py and the Future of HPC

- Future compute clusters will get more complicated
- Future use cases will also get more sophisticated and more demanding
- Urgent need for a way to explore run time design space in a rapid way that is accessible to new programmers
- While performance is critical, some performance may be traded for a more accessible code base that is friendlier to explore new design patterns and runtime systems
Experiences based on Summit + Covid-19

- Run times such as Dask + UCX pushed to bleeding edge
 - Lots of bleeding
- Urgent nature of Covid work meant that performance portability and application readiness were critical
 - From zero to docking and scoring 1.6 billion compounds in months, not years
 - Software written to leverage UCX scales well on many different hardware configurations
 - Efficient data transfer and scheduling, whether running on a DGX box or a full Summit run
 - How can we do better?
Experiences based on Summit + Covid-19

- UCX + IO in task graph
 - How to arrange IO as a part of the compute graph?
 - How to do light reprocessing and data format changes in line with UCX?
References

- UCX-Py documentation
 - https://ucx-py.readthedocs.io/
- TPCx-BB Medium blogpost
 - https://sc20.supercomputing.org/presentation/?id=cov103&sess=sess388
 - https://www.youtube.com/watch?v=c2nwJlgUwrk
THANK YOU

Peter Entschev (NVIDIA), pentschev@nvidia.com
Matt Baker (ORNL), bakermb@ornl.gov
Benjamin Zaitlen (NVIDIA), bzaitlen@nvidia.com